
 

MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 57 (1), 2020, 167-174                                                             167                                      https://doi.org/10.37358/MP.20.1.5323                                                               
    
 

Polymer Dynamics Through Group Invariance of  

SL(2R) – Type in a Fractal Paradigm 
 

 

CONSTANTIN PLACINTA1, TUDOR CRISTIAN PETRESCU2, VLAD GHIZDOVAT3,  

STEFAN ANDREI IRIMICIUC4, DECEBAL VASINCU5, MARICEL AGOP6, 7,  

VIOREL-PUIU PAUN8* 

1Materials Science Department, Gheorghe Asachi Technical University, 59A Prof. dr. docent Dimitrie Mangeron Blvd., 

700050, Iasi, Romania 

 2Department of Structural Mechanics, “Gheorghe Asachi” Technical University, 1Prof. dr. docent Dimitrie Mangeron 

Blvd., 700050, Iasi, Romania  

 3Grigore T. Popa University of Medicine and Pharmacy, Faculty of Medicine, Biophysics and Medical Physics 

Department, 16 University Str., 700115, Iasi,  Romania 
4National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125, Bucharest, Romania  
5Grigore T. Popa University of Medicine and Pharmacy, Faculty of Dental Medicine, Biophysics and Medical Physics 

Department, 16 University Str.,  700115, Iasi, Romania 
6Physics Department, Gheorghe Asachi Technical University, 59A Prof. dr. docent Dimitrie Mangeron Blvd., 700050, Iasi, 

Romania 
7Academy of Romanian Sciences, 54 Splaiul Independentei, 050094, Bucharest, Romania 
8University Politehnica of Bucharest, Faculty of Applied Sciences, Physics Department, 313 Splaiul Independentei, 

060042, Bucharest, Romania  

 

Abstract.We analyze polymer dynamics in a fractal paradigm. Then, it is shown that polymer dynamics 

in the form of Schrödinger – type regimes imply synchronization processes of the polymers’ structural 

units, through joint invariant function of two simultaneous isomorphic groups of SL(2R) – type, as 

solutions of Stoka equations. In this context, period doubling, damped oscillations, self – modulation 

and chaotic regimes emerge as natural behaviors in the polymer dynamics. The present model can 

also be applied to a large class of materials, such as biomaterials, biocomposites and other advanced 

materials. 
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1.Introduction 
To describe polymer dynamics in the fractal paradigm, but remaining faithful to the differentiable 

mathematical procedures, it is necessary to explicitly introduce scale resolutions, both in the 

expression of the variables and in the fundamental equations which govern polymer dynamics. This 

means that, instead of “working” with a single variable described by a strict non-differentiable 

function, it is possible to “work” only with approximations of these mathematical functions obtained 

by averaging them on different scale resolutions. As a consequence, any variable purposed to describe 

polymer dynamics will perform as the limit of a family of mathematical functions, this being non – 

differentiable for null scale resolutions and differentiable otherwise [1, 2]. 
In the present paper, considering the fractal paradigm as being functional [1-4], a non – 

differentiable model describing various polymer dynamics is proposed. 

 

2.Theoretical part 
1.Mathematical Model 

The polymer is a set of entities (or structural units) that, through their interactions, relationships or 

dependencies form a unified whole. 
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In what follows, the polymer will be assimilated with a fractal. Such an assumption is sustained by 

the following example, related to the collision processes in a polymer: between two successive 

interactions (collisions) of structural units, the trajectory of the entity is a straight line that becomes 

non – differentiable in the impact point. Considering that all the collision impact points form an 

uncountable set of points, it results that the trajectories of the polymer structural units become 

continuous and non – differentiable curves, i.e. fractal curves. In such a context, the Fractal Theory of 

Motion in the form of Scale Relativity becomes operational through the scale covariant derivative [3, 

4]: 

�̂�

𝑑𝑡
= 𝜕𝑡 + �̂�𝑙𝜕𝑙 +

1

4
(𝑑𝑡)

(
2

𝐷𝑓
)−1

𝐷𝑙𝑝𝜕𝑙𝜕𝑝, 
(1) 

where 

�̂�𝑙 = 𝑉𝐷
𝑙 − 𝑉𝐹

𝑙 

𝐷𝑙𝑝 = 𝑑𝑙𝑝 − 𝑖�̂�𝑙𝑝 

𝑑𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝 − 𝜆−
𝑙 𝜆−

𝑝  

�̂�𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝 + 𝜆−
𝑙 𝜆−

𝑝  

𝜕𝑡 =
𝜕

𝜕𝑡
, 𝜕𝑙 =

𝜕

𝜕𝑥𝑙
, 𝜕𝑙𝜕𝑝 =

𝜕

𝜕𝑥𝑙

𝜕

𝜕𝑥𝑝
, 𝑖 = √−1, 𝑙, 𝑝 = 1,2,3 

 

(2) 

 

In the above – written relations, 𝑥𝑙 is the fractal spatial coordinate, 𝑡 is the non – fractal time 

having the role of an affine parameter of the motion curves, �̂�𝑙 is the complex velocity, 𝑉𝐷
𝑙  is the 

differential velocity independent on the scale resolution 𝑑𝑡, 𝑉𝐹
𝑙 is the non – differentiable velocity 

dependent on the scale resolution, 𝐷𝐹 is the fractal dimension of the movement curve, 𝐷𝑙𝑝 is the 

constant tensor associated with the differentiable – non – differentiable transition, 𝜆+
𝑙 (𝜆+

𝑝 ) is the 

constant vector associated with the backward differentiable – non – differentiable physical processes 

and 𝜆−
𝑙 (𝜆−

𝑝 ) is the constant vector associated with the forward differentiable – non – differentiable 

physical processes. Fractal dimensions can be defined in more than one way: more precisely, the fractal 

dimension in the sense of Kolmogorov, the fractal dimension in the sense of Hausdorff – Besikovitch 

etc. [2, 5, 6]. Selecting one of these definitions and operating it in the polymer dynamics, the value of the 

fractal dimension must be constant and arbitrary for the entirety of the dynamical analysis: for example, 

it is regularly found 𝐷𝐹 < 2 for correlative processes, 𝐷𝐹 > 2 for non – correlative processes, etc. [1, 5, 

6]. 

Now, accepting the functionality of the scale covariance principle i.e. applying the operator (1) to 

the complex velocity field from (2), in the absence of any external constraint, the motion equation of 

the polymer structural units (i.e. the geodesics equation on a fractal space) takes the following form [3, 

4]: 

 

�̂��̂�𝑖

𝑑𝑡
= 𝜕𝑡�̂�𝑖 + �̂�𝑙𝜕𝑙�̂�𝑖 +

1

4
(𝑑𝑡)

(
2

𝐷𝑓
)−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘�̂�𝑖 = 0, 
(3) 

 

This means that the fractal acceleration 𝜕𝑡�̂�𝑖, the fractal convection �̂�𝑙𝜕𝑙�̂�𝑖 and the fractal 

dissipation 𝐷𝑙𝑘𝜕𝑙𝜕𝑘�̂�𝑖 in the polymer structural units’ dynamics, are in equilibrium in any point of the 

fractal curve.  

If the fractalisation is achieved by Markov – type stochastic processes [2, 5, 6], then: 

 

𝜆+
𝑖 𝜆+

𝑙 = 𝜆−
𝑖 𝜆−

𝑙 = 2𝜆𝛿𝑖𝑙, (4) 

where 𝜆 is a coefficient associated to the differentiable – non – differentiable transition and 𝛿𝑖𝑙 is 

Kronecker’s pseudo – tensor. 

Under these conditions, the geodesics equation (3) takes the simple form: 
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�̂��̂�𝑖

𝑑𝑡
= 𝜕𝑡�̂�𝑖 + �̂�𝑙𝜕𝑙�̂�𝑖 − 𝑖𝜆(𝑑𝑡)

(
2

𝐷𝑓
)−1

𝜕𝑙𝜕𝑙�̂�
𝑖 = 0 

(5) 

 

2.Dynamics of polymers structural units in the form of Schrodinger – type “regimes” 

For irrotational motions of the polymer structural units, the complex velocity field �̂�𝑖 from (2) 

takes the form: 

 

�̂�𝑖 = −2𝑖𝜆(𝑑𝑡)
(

2
𝐷𝑓

)−1
𝜕𝑖 ln Ψ 

(6) 

 

where ln Ψ is the fractal scalar potential of the velocity fields and Ψ is the state function. 

Then, substituting (6) in (5) the geodesics equation (5) becomes (for details on the method, [3, 4]. 

 

𝜆2(𝑑𝑡)
(

4
𝐷𝑓

)−2
𝜕𝑙𝜕𝑙Ψ + 𝑖𝜆(𝑑𝑡)

(
2

𝐷𝑓
)−1

𝜕𝑡Ψ = 0 
   (7) 

 

This is a Schrödinger equation of fractal type. Therefore, various dynamics of any polymer 

structural units can be implemented as Schrödinger – type fractal “regimes” (i.e. at various scale 

resolutions).  

In the one – dimensional stationary case, the Schrödinger equation of fractal type takes the form 

(for details on the method see [1, 3, 4]): 

 

𝑑2Ψ

𝑑𝑥2
+ 𝑘0

2Ψ = 0 
(8) 

with 

𝑘0
2 =

𝐸

2𝑚0𝜆2(𝑑𝑡)
(

4
𝐷𝑓

)−2
 

(9) 

In (8) 𝑥 is the fractal spatial coordinate, 𝐸 is the fractal energy of the polymer entity and 𝑚0 is the 

rest mass of the polymer entity. 

In the general case, Ψ(𝑥) is a complex function. Considering that, Ψ(𝑥) can be written in the form: 

 

Ψ(𝑥) = 𝑋(𝑥) + 𝑖𝑌(𝑥) (10) 

so that Eq. (8) in real variables becomes: 

 

𝑑2𝑋

𝑑𝑥2
+ 𝑘0

2𝑋 = 0 
(11) 

𝑑2𝑌

𝑑𝑥2
+ 𝑘0

2𝑌 = 0 
(12) 

Relations (11) and (22) are invariant to the group of SL(2R) – type (for details see [7, 8]): 

 

𝑋′ = 𝛼𝑋 + 𝛽𝑌 

𝑌′ = 𝛾𝑋 + 𝛿𝑌 

𝛼𝛿 − 𝛽𝛾 = 1 

(13) 

The basis of this Lie algebra is given by the infinitesimal generators: 

𝑋1 = 𝑌
𝜕

𝜕𝑋
, 𝑋2 =

1

2
(𝑋

𝜕

𝜕𝑋
− 𝑌

𝜕

𝜕𝑌
) , 𝑋3 = −𝑋

𝜕

𝜕𝑌
, 

(14) 
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these generators satisfying the commutation relations: 

 

[𝑋1, 𝑋2] = 𝑋1, [𝑋2, 𝑋3] = 𝑋3, [𝑋3, 𝑋1] = −2𝑋2 (15) 

The solution of equations ((11), (12)) is written in the form: 

 

[𝑋(𝑥)|𝑌(𝑥)] = 𝑧𝑒𝑖(𝑘0𝑥+𝜃) + 𝑧̅𝑒−𝑖(𝑘0𝑥+𝜃) (16) 

 

where 𝑧 is a complex amplitude, 𝑧̅ is the complex conjugate of 𝑧 and 𝜃 is the specific phase. Thus, for 

a given polymer, 𝑧, 𝑧̅ and 𝜃 label each entity that have, as a general characteristic, the same 𝑘0. 

The equation (8) has a “hidden” symmetry in the form of a homographic group. Indeed, the ratio of 

two independent linear solutions of equation (8), 𝜏, is a solution of Schwartz’s differential equation 

[9]: 

{𝜏, 𝑥} =
𝑑

𝑑𝑥
(

�̈�

�̇�
) −

1

2
(

�̈�

�̇�
)

2

= 2𝑘0
2 

�̇� =
𝑑𝜏

𝑑𝑥
, �̈� =

𝑑2𝜏

𝑑𝑥2
 

 

(17) 

The left part of (17) is invariant with respect to the homographic transformation: 

 

𝜏 ↔ 𝜏′ =
𝑎1𝜏 + 𝑏1

𝑐1𝜏 + 𝑑1
, 

(18) 

with 𝑎1, 𝑏1, 𝑐1 and 𝑑1 real parameters. The relation (18) corresponding to all possible values of these 

parameters defines the group SL(2R). 

Thus, all the entities of the polymers having the same 𝑘0 are in biunivocal correspondence with the 

transformations of the group SL(2R). This allows the construction of a “personal” parameter 𝜏 for each 

entity of the polymer, separately. Indeed, as a “guide” it is chosen the general form of the solution of 

(17), which is written as: 

 

𝜏′ = 𝑢 + 𝜐 tan(𝑘0𝑥 + 𝜃) (19) 

 

So, through 𝑢, 𝜐 and 𝜃 it is possible to characterize any entity of the polymer. 

In such a context, identifying the phase from (19) with the one from (16), the “personal” parameter 

of the entity becomes: 

 

𝜏′ =
𝑧 + 𝑧̅𝜏

1 + 𝜏
, 𝑧 = 𝑢 + 𝑖𝜐, 𝑧̅ = 𝑢 − 𝑖𝜈, 𝜏 ≡ 𝑒2𝑖(𝑘0𝑥+𝜃) 

(20) 

 

The fact that (20) is also a solution of (17) implies the following group, of SL(2R) – type (for 

details see [3, 4]): 

 

𝑧′ =
𝑎1𝑧 + 𝑏1

𝑐1𝑧 + 𝑑1
 

𝑘′ =
𝑐1𝑧̅ + 𝑑1

𝑐1𝑧 + 𝑑1
𝑘 

(21) 

 

The infinitesimal generators of the group (21) are: 
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𝐵1 =
𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
, 𝐵2 = 𝑧

𝜕

𝜕𝑧
+ 𝑧̅

𝜕

𝜕𝑧̅
, 𝐵3 = 𝑧2

𝜕

𝜕𝑧
+ 𝑧̅2

𝜕

𝜕𝑧̅
+ (𝑧 − 𝑧̅)𝑘

𝜕

𝜕𝑘
, 

(22) 

 

with commutation relations: 

 

[𝐵1, 𝐵2] = 𝐵1, [𝐵2, 𝐵3] = 𝐵3, [𝐵3, 𝐵1] = −2𝐵2 (23) 

 

The group (21) admits the differential 1- forms (absolutely invariant through the group) [3, 4, 10]: 

 

Ω0 = −𝑖 (
𝑑𝑘

𝑘
−

𝑑𝑧 + 𝑑𝑧̅

𝑧 − 𝑧̅
) , Ω1 =

𝑑𝑧

(𝑧 − 𝑧̅)𝑘
, Ω2 = −

𝑘𝑑𝑧̅

𝑧 − 𝑧̅
, (24) 

 

and the invariant metric: 

𝑑𝑠2

𝑓
= Ω0

2 − 4Ω1Ω2, (25) 

with 𝑓 an arbitrary constant factor. 

 

3. Results and discussions 
An interesting case is the one induced by means of the parallel transport of direction in the Levy – 

Civita sense [3, 4, 10]. Then, in the space of variables (𝑧, 𝑧̅, 𝑘) the differential 1 – form Ω0 is null: 

 

Ω0 = 0, (26) 

while in the space of variables (𝑢, 𝜐, 𝜃) is: 

 

𝑑𝜃 = −
𝑑𝑢

𝜐
 (27) 

Since through (26) or (27) the invariant metric (25) is reduced to the Lobacewski plan metric in 

Poincaré representation, it results: 

𝑑𝑠2

𝑓
=

𝑑𝑧𝑑𝑧̅

(𝑧 − 𝑧̅)2
=

𝑑𝑢2 + 𝑑𝜐2

𝜐2
 (28) 

In such a conjecture, 𝜃 from (27) will define the angle of the parallel transport of direction in the 

Levy – Civita sense (for details [3, 4, 10]). Once the previous functionality is accepted (21), the 

infinitesimal generators of the group (18) become: 

 

�̅�1 =
𝜕

𝜕𝑧
+

𝜕

𝜕𝑧̅
, �̅�2 = 𝑧

𝜕

𝜕𝑧
+ 𝑧̅

𝜕

𝜕𝑧
, �̅�3 = 𝑧2

𝜕

𝜕𝑧
+ 𝑧̅2

𝜕

𝜕𝑧
 (29) 

and satisfy the same commutation relations (23). 

Now, consider another group of SL(2R) – type given by means of infinitesimal generators 

 

�̅�1 =
𝜕

𝜕ℎ
+

𝜕

𝜕ℎ̅
, �̅�2 = ℎ

𝜕

𝜕ℎ
+ ℎ̅

𝜕

𝜕ℎ̅
, �̅�3 = ℎ2

𝜕

𝜕ℎ
+ ℎ̅2

𝜕

𝜕ℎ̅
 (30) 

 

which satisfy the commutation relations: 

 

[�̅�1, �̅�2] = �̅�1, [�̅�2, �̅�3] = �̅�3, [�̅�3, �̅�1] = −2�̅�2 (31) 

 

Then, the Stoka system [11, 12] for operators (29) and (30) takes the form: 
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𝜕𝐹

𝜕ℎ
+

𝜕𝐹

𝜕ℎ̅
+

𝜕𝐹

𝜕𝑧
+

𝜕𝐹

𝜕𝑧̅
= 0 

ℎ
𝜕𝐹

𝜕ℎ
+ ℎ̅

𝜕𝐹

𝜕ℎ̅
+ 𝑧

𝜕𝐹

𝜕𝑧
+ 𝑧̅

𝜕𝐹

𝜕𝑧̅
= 0 

ℎ2
𝜕𝐹

𝜕ℎ
+ ℎ̅2

𝜕𝐹

𝜕ℎ̅
+ 𝑧2

𝜕𝐹

𝜕𝑧
+ 𝑧̅2

𝜕𝐹

𝜕𝑧̅
= 0 

(32) 

 

It is important to notice that this system has the rank 3; as such, only one independent integral 

exists. This is the cross – ratio generated by means of the relation: 

 

ℎ − 𝑧

ℎ − 𝑧̅
:
ℎ̅ − 𝑧

ℎ̅ − 𝑧̅
≡ 𝜁2, (33) 

 

where 𝜁 is real, and the square is taken in order to account for the fact that the cross – ratio (33) is 

always positive. Any joint invariant function, 𝐹, is here a regular function of this ratio. In such a 

context, if 𝜁 ≡ tanh 𝜙, where 𝜙 is arbitrary, then 𝑧 is related to ℎ through the linear relation:  

 

𝑧 = �̅� + �̅�ℎ0 (34) 

where 

ℎ = �̅� + 𝑖�̅�, 𝑖 =  √−1 

ℎ0 = −𝑖
cosh 𝜙 − 𝑒−𝑖𝛼 sinh 𝜙

cosh 𝜙 + 𝑒−𝑖𝛼 sinh 𝜙
 

Δ𝜙 = 0 

(35) 

Δ is the Laplace operator and 𝛼 is real. 

 

Therefore, synchronization of phase – amplitude type of each polymer entity (mathematically 

described through parallel transport of direction in Levi – Civita sense) implies joint invariant function 

of two simultaneous isomorphic groups of SL(2R) – type as solution of Stoka – type equation. Then, 

period doubling, damping oscillations, self – modulation and chaotic regimes emerge as natural 

behaviors in the polymer dynamics. (Figures 1 a – l for 𝛼 = 𝜔𝑡, tanh 𝜙 = 0.1 and Real [(𝑧 − �̅�)/
�̅�] ≡Amplitude at various scale resolutions, given by means of the maximum value of 𝜔). Let us note 

that synchronization types such as the ones mentioned above can be found in material structures in the 

form of self-structuring phenomena, from macroscale to nanoscale – for details [13-19]. 
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Figure 1. Various types of synchronization of polymer entity (3D, contour plot and time series 

representation of the function signaling): period doubling (a, b, c), damped oscillation regime  

(d, e, f), signal modulation (g, h, i) and chaotic behavior (j, k, l)) 

4. Conclusions 
Various polymer dynamics in the fractal paradigm are proposed. Then: 

i) The polymer structural units dynamics in the form of Schrodinger – type regimes imply various 

synchronization mechanisms of the polymer entities. In the most general case, the SL(2R) group works 

as a group of “synchronism” among the various entities of the polymer, process to which the 

amplitudes and phases of each of them obviously participate, in the sense that they are also connected. 

More precisely, by means of SL(2R) group, the phase is only moved with a quantity depending on the 

amplitude of the polymer structural unit at the transition among various entities of the polymer. More 

than that, the amplitude of the polymer structural unit is also affected from a homographic perspective. 

The usual “synchronization” manifested through the delay of the amplitudes and phases of the polymer 

entities must represent here only a fully particular case. 

ii) In the case of synchronization, which implies reciprocal conditions of phase – amplitude type 

of each polymer structural unit (mathematically described through parallel transport of direction in 

Levi – Civita sense), joint invariant function of two simultaneous isomorphic groups of SL(2R) – type 

d e Damped oscillations f 

g h Signal modulation i 

j k l 

Chaotic behaviour 
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as solution of Stoka – type equation, are revealed. Then, period doubling, damping oscillations, self – 

modulation and chaotic regimes emerge as natural behaviors in the polymer structural units dynamics.  

This model may be extended to use to other classes of materials, such as biomaterials, 

biocomposites and other advanced materials. 

 

References 

1.NOTTALE, L., Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity 

and Quantum Mechanics, Imperial College Press, London, 2011. 

2.MANDELBROT, B. B., The Fractal Geometry of Nature, W. H. Freeman and Co., San Fracisco, 

1982. 

3.MERCHES, I., AGOP, M., Differentiability and fractality in dynamics of physical systems, World 

Scientific, New Jersey, 2016. 

4.AGOP, M., PAUN, V.P., On the new perspectives of fractal theory. Fundaments and applications, 

Romanian Academy Publishing House, Bucharest, 2017. 

5.JACKSON, E. A., Perspectives of Nonlinear Dynamics, Vol. 1, Cambridge University Press, New 

York, 1993. 

6.HONCIUC, M., PAUN, V.P., Rev. Chim., 54, (1), 2003, 74-76.   
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